z-logo
Premium
Control of molecular orientation
Author(s) -
Alfrey Turner
Publication year - 1975
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760150319
Subject(s) - materials science , amorphous solid , crystallite , polymer , composite material , orientation (vector space) , ultimate tensile strength , isotropy , crystallization , crystallography , geometry , optics , chemical engineering , metallurgy , chemistry , mathematics , physics , engineering
I. Amorphous polymers . The mechanical performance of a glassy amorphous polymer is strongly dependent upon molecular orientation. The pattern of molecular orientation is governed by the kinematics (and temperature) of mechanical forming operations. Three types of controllable orientation are: (a) uniaxial, (b) biaxial, and (c) “crossed.” The optimum pattern of orientation in a part is one which is appropriate for the mechanical stresses encountered in service. For a fiber subjected to tensile and bending loads, uniaxial orientation is appropriate. A shell structure, subjected to multiaxial stresses, requires either biaxial or crossed orientation for maximum performance. As a rule, the maximum achievable multidirectional strength in such a structure is less than the maximum strength of a uniaxially oriented fiber. II. Crystalline polymers . Oriented crystalline polymer structures can be created in two distinct ways. An isotropic polycrystalline polymer can be deformed below the melting point, with extensive reorganization of the crystal morphology, or an oriented amorphous melt can undergo crystallization to yield oriented crystalline polymer. Performance of an oriented semicrystalline polymer depends upon orientation of the amorphous portion as well as orientation of the crystallites. As with amorphous polymers, orientation can be uniaxial, biaxial, or crossed. “Orientation” usually denotes c ‐axis orientation only, but drawing followed by rolling can result in double orientation—orientation of a ‐axis, b ‐axis, and c ‐axis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here