Premium
An analysis of fiber buckling
Author(s) -
Hackett R. M.,
Tarpy T. S.,
Wood J. L.
Publication year - 1972
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760120404
Subject(s) - materials science , buckling , axial symmetry , finite element method , composite material , epoxy , fiber , stress (linguistics) , structural engineering , shearing (physics) , engineering , linguistics , philosophy
This paper presents results obtained by the experimental technique of photoelastic stress analysis and by finite or discrete element analysis, applied to the case of buckling of a single, axially‐loaded metal fiber embedded in a plastic matrix. The program was conducted utilizing a mild steel fiber embedded in an epoxy resin system. The fiber was loaded axially with an increasing compressive force until buckling occurred. Along with determination of the critical load for the fiber, the maximum shearing stress at any point in the epoxy matrix was determined using two‐dimension photoelastic stress analysis. In the analytical study, the fiber was modeled by a series of bending elements and the matrix by an assemblage of constant‐strain triangular elements. The total system was thus modeled by the two types of elements connected at common nodal points. The instability was solved as a standard eigenvalue problem and the stress tensor was obtained by finite element stress analysis.