z-logo
Premium
Using the external magnetic field of composites to control fiber orientation and enhancement of electrical conductivity
Author(s) -
Chang CheWei,
Chen ShiaChung,
Tsai PiLin,
Chiu MinChi,
Liu YuShiu
Publication year - 2021
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.25689
Subject(s) - materials science , magnetic field , composite material , fiber , perpendicular , orientation (vector space) , electrical resistivity and conductivity , epoxy , electrical engineering , geometry , physics , mathematics , quantum mechanics , engineering
The industrial developments have led to more applications of various composites. Since fiber orientation and distribution will influence product performance in composites, controlling said orientation and distribution is of critical importance. This study used external magnetic fields to control the fiber orientation and distribution in a polymer. The orientation of the actual fibers under magnetic field control during flowing was observed using a visualization system, which was made by PMMA and transparent epoxy as an upper cover and filling polymer. In order to clearly observe and calculate, 0.1 wt% fiber content was used, and 0.3 wt% fiber content was used to measure conductivity. Fiber distribution angles without a magnetic field concentrate parallel to the flow direction (0° ~ 30° and 151° ~ 180°) while distribution angles under magnetic field control were concentrated along the magnetic field direction, which was perpendicular to the flow direction (61° ~ 120°). The higher the magnetic flux density, the larger the torque of the electromagnetic field on the fibers and the higher the orientation of fibers was with the magnetic field. The electrical conductivity was 12.23 times higher for 1 mm fibers in an external magnetic field versus no magnetic field.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here