Premium
Synthesis, characterization, and ionic conductivity of electrospun organic–inorganic hybrid gel electrolytes
Author(s) -
Aytan Emre,
Uğur Mustafa H.,
KayamanApohan Nilhan
Publication year - 2020
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.25320
Subject(s) - materials science , thermogravimetric analysis , ionic conductivity , electrolyte , nanocomposite , chemical engineering , differential scanning calorimetry , electrospinning , thermal stability , conductivity , polymer chemistry , polymer , composite material , electrode , chemistry , physics , engineering , thermodynamics
In this work, we described the synthesis of organic–inorganic hybrid gel electrolytes combining electrospinning, sol–gel, and ultraviolet (UV) curing techniques in order to investigate their ionic conductivity properties. First, 3‐glycidyloxypropyl trimethoxysilane modified polyamic acid and alkoxysilane functional poly(dimethyl siloxane) were electrospun together. Then, the following thermal imidization, the obtained fiber was cured in the UV curable gel formulation. To improve the interaction between fiber and gel matrix, 3‐(trimethoxysilyl)propyl methacrylate was partly hydrolyzed and then used as a bifunctional crosslinker. Finally, the membrane was soaked into 0.5 M LiFP 6 salt solution to obtain organic–inorganic hybrid gel electrolytes. The chemical structure, ionic conductivity, and range of electrochemical stability window of the photocured nanocomposite electrolytes were investigated by using FTIR, thermogravimetric analysis, differential scanning calorimetry, electrochemical impedance spectroscopy, linear sweep voltammetry, and SEM analysis. The acquired results from experiments indicate that a convenient nanocomposite electrolyte for lithium‐ion batteries with high electrolyte (Li salt) uptake, adequate conductivity (1.02 × 10 −3 S cm −1 ) at ambient temperature and electrochemically stable between 1 and 6 V had been prepared. POLYM. ENG. SCI., 60:619–629, 2020. © 2019 Society of Plastics Engineers