Premium
Dielectric, transport and thermal properties of clay based polymer‐ nanocomposites
Author(s) -
Tripathi Namrata,
Thakur Awalendra K.,
Shukla Archana,
Marx David T.
Publication year - 2018
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.24549
Subject(s) - materials science , nanocomposite , polymer clay , composite material , dielectric , thermal , polymer , polymer nanocomposite , optoelectronics , thermodynamics , physics
The polymer nanocomposite films (PNC) with varying amounts of organically modified sodium montmorillonite (DMMT) clay in poly(methyl methacrylate) (PMMA) based polymer matrix were prepared by solution cast technique. Dielectric measurements were carried out on these films as a function of frequency at 30°C and 100°C. The addition of clay significantly improved the ionic conductivity. Transport parameters, such as the diffusion coefficient ( D ), number density ( n ) and mobility ( μ ) of charge carriers were determined using a new approach, which is based on impedance spectroscopy. The temperature‐dependent dc conductivity, relaxation and mobility plots obey the Arrhenius rule. The results suggest that the higher ionic conductivity of these PNC films at elevated temperature is not only due to increased mobility of ions, but it is accompanied by a significant increase in carrier concentration. Analysis of DSC thermogram reveals a very high percentage of amorphous content for all samples. A good correlation among dielectric permittivity, carrier concentration, mobility and ionic conductivity has also been observed. POLYM. ENG. SCI., 58:220–227, 2018. © 2017 Society of Plastics Engineers