Premium
Facile fabrication of PVA composite fibers with high fraction of multiwalled carbon nanotubes by gel spinning
Author(s) -
Wei Yizhe,
Lai Dengpan,
Zou Liming,
Ling Xinlong,
Lu Hongwei,
Xu Yongjing
Publication year - 2018
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.24528
Subject(s) - materials science , thermogravimetric analysis , composite number , composite material , crystallinity , fourier transform infrared spectroscopy , vinyl alcohol , raman spectroscopy , crystallization , carbon nanotube , polyacrylonitrile , differential scanning calorimetry , ultimate tensile strength , chemical engineering , polymer , physics , optics , engineering , thermodynamics
Poly(vinyl alcohol) (PVA) composite fibers with high fraction of multiwalled carbon nanotubes (MWCNTs) were prepared by gel spinning process. Here, a modified process was introduced to prepare concentrated PVA/MWCNTs/DMSO spinning dope, and to attain good dispersion of MWCNTs in the fibers. The final composite fibers were studied by thermogravimetric analyzer (TGA), Fourier transform infrared spectrometer (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC), and WAXD analysis. The total content of MWCNTs in PVA composite fibers, from 5 to 30 wt%, was confirmed by TGA analysis. FTIR and Raman measurements demonstrated the existence of strong hydrogen interaction between MWCNTs and PVA matrix. SEM images of composite fibers showed smooth surface, regular cross‐section shape and good dispersion of MWCNTs in the fibers. DSC analysis showed that the crystallinity first increased and then decreased with the increase of MWCNTs contents. It can be concluded that low concentration of MWNCTs can act as nucleation sites for crystallization of PVA component, and large amount of MWCNTs may impede the crystallization of PVA component. The WAXD analysis results indicated that the crystal orientation of the PVA component in PVA composite fibers is almost identical at the same drawn ratio. Polarized Raman analysis indicated a small increase in MWCNTs orientation for the composite fibers. The mechanical properties tests showed that the composite fibers exhibit significant improvement in tensile strength and modulus as compared to the neat PVA fibers. The composite fibers also showed sustained growth in electrical conductivity. POLYM. ENG. SCI., 58:37–45, 2018. © 2017 Society of Plastics Engineers