Premium
Exploring the influence of co‐monomer content in the dry crosslinked ethylene octene copolymer based blends
Author(s) -
Padmanabhan R.,
Nando Golok B.,
Naskar Kinsuk
Publication year - 2017
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.24479
Subject(s) - materials science , copolymer , monomer , octene , composite material , scanning electron microscope , curing (chemistry) , irradiation , ultimate tensile strength , polymer chemistry , chemical engineering , polymer , physics , nuclear physics , engineering
This article illustrates the influence of co‐monomer content in the ethylene octene copolymer (EOC) on the dry curing process of EOC:PDMS rubber blends. The EOC:PDMS blends were prepared by melt mixing in an internal mixer and crosslinked through electron beam radiation method. During electron beam irradiation both the EOC and PDMS phase gets crosslinked; which is evident from the gel content study. From the rheology analysis, it is understood that the EOC with high octene (co‐monomer) content has better radiation crosslinkability as compared with the EOC with low co‐monomer content. Through radiation crosslinking, the physico‐mechanical properties of the EOC:PDMS system was improved significantly. The tensile strength of high co‐monomer content EOC:PDMS 70:30 blends were drastically improved by 49.5% on irradiation with a dosage of 75 kGy. Morphology study of the EOC:PDMS system were carried out by scanning electron microscopy (SEM) and correlated with the physico‐mechanical properties. The radiation crosslinked blends shows higher volume resistivity, lower dielectric constant, and loss as compared with the uncrosslinked counterparts. POLYM. ENG. SCI., 57:1016–1027, 2017. © 2016 Society of Plastics Engineers