Premium
Dielectric and conductivity relaxation in poly(3,4‐ethylenedioxythiophene) nanotubes
Author(s) -
Chutia Paragjyoti,
Kumar Ashok
Publication year - 2016
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.24271
Subject(s) - materials science , dielectric , conductivity , permittivity , relaxation (psychology) , condensed matter physics , dopant , poly(3,4 ethylenedioxythiophene) , conductive polymer , composite material , doping , polymer , chemistry , optoelectronics , physics , psychology , social psychology
The charge carriers relaxation dynamics in synthesized poly(3,4‐ethylenedioxythiophene) nanotubes has been investigated as a function of frequency and temperature through the framework of dielectric permittivity, modulus formalism and impedance formalism. The fitting of experimental data of real part of dielectric permittivity and imaginary part of modulus with Havriliak‐Negami equation and Bergman modified Kohlrausch‐Williams‐Watts function indicates the presence of non‐Debye type relaxation process in the synthesized poly(3,4‐ethylenedioxythiophene) nanotubes. The scaling of imaginary part of modulus and impedance formalisms have been performed to understand the charge carrier relaxation dynamics in the synthesized samples, which suggests the presence of time temperature superposition principle in the nanotubes. The red shifting of the band from 1440 cm −1 to 1430 cm −1 in micro‐Raman spectra indicates the conformational transition from benzenoid to quinoid structure with increasing dopant concentration. The linear increase of imaginary part of dielectric permittivity with decreasing frequency is ascribed to the higher contribution from dc conductivity as compared to that from the electrode polarization effects. POLYM. ENG. SCI., 56:448–457, 2016. © 2016 Society of Plastics Engineers