Premium
Graphene coating assisted injection molding of ultra‐thin thermoplastics
Author(s) -
Cabrera Eusebio Duarte,
Zhang Panpan,
Liao WeiChing,
Yen YingChieh,
Yu Jiangfeng,
Castro Jose,
Lee L. James
Publication year - 2015
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.24079
Subject(s) - materials science , composite material , molding (decorative) , polypropylene , polycarbonate , coating , compression molding , acrylonitrile butadiene styrene , mold
High strength light weight parts are critical for the development of new technologies, particularly electronic devices, such as laptop computers, smart phones, and tablet devices. Injection molded plastics and composites are excellent choices for mass producing such parts. As the part thickness decreases from traditional injection molding (>2 mm thickness) to thin wall molding (∼1 mm thickness), and lastly, to ultra‐thin wall molding (<0.5 mm thickness), avoiding incomplete filling (short shots) becomes more challenging. Even though, methods exist today for molding thin‐wall plastic parts (i.e., fast heating/fast cooling injection molding), they require multiple steps resulting in a noncost efficient process. In this article, we demonstrate the technical feasibility of using graphene coating to facilitate flow, by promoting slip at the mold walls. We evaluate the influence of coated and uncoated mold inserts on fiber orientation. We present experimental results using un‐reinforced polypropylene and a 40% by weight carbon fiber reinforced polycarbonate/acrylonitrile butadiene styrene. POLYM. ENG. SCI., 55:1374–1381, 2015. © 2015 Society of Plastics Engineers