Premium
Preparation and characterization of polystyrene‐grafted attapulgite via surface‐initiated redox polymerization
Author(s) -
Zhang Liu,
Yang Haicun,
Liu Hui,
Ni Qingting,
Gong Fanghong
Publication year - 2015
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23956
Subject(s) - thermogravimetric analysis , polystyrene , materials science , polymer chemistry , polymerization , redox , fourier transform infrared spectroscopy , triethoxysilane , scanning electron microscope , surface modification , nuclear chemistry , chemical engineering , chemistry , organic chemistry , polymer , engineering , metallurgy , composite material
Polystyrene‐grafted attapulgite (ATP‐g‐PS) was prepared using surface‐initiated redox initiation via graft from approach. ATP was modified with (3‐ aminopropyl) triethoxysilane (APTES) to anchor amine on the surface (ATP‐NH 2 ), and then ATP‐NH 2 was further treated with 4‐(diethylamino) salicylaldehyde (DEAS) to give aromatic tertiary amine groups functional ATP (ATP‐ATA). Subsequently, the surface‐initiated redox polymerization of styrene in the presence of ATP‐ATA and benzoyl peroxide (BPO) was performed to afford ATP‐g‐PS . The chemical grafting of PS on the surface of ATP was confirmed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and thermogravimetric analysis . The crystal structure of PS‐grafted ATP was characterized by X‐ray diffraction (XRD) analysis. The morphology of ATP‐g‐PS was observed by scanning electron microscopy (SEM) . POLYM. ENG. SCI., 55:889–895, 2015. © 2014 Society of Plastics Engineers