z-logo
Premium
Fatigue properties of vibration‐welded postindustrial waste nylon with glass fibers at room and elevated temperatures
Author(s) -
Zhang Y.,
Lockwood K.T.,
Bates P.J.,
DuQuesnay D.L.
Publication year - 2015
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23947
Subject(s) - materials science , ultimate tensile strength , composite material , welding , fatigue limit , glass fiber , nylon 66 , tension (geology) , nylon 6 , fiber , polymer , polyamide
The effect of temperature on the tensile and fatigue strength of vibration‐welded and unwelded postindustrial waste nylon 6 reinforced with 30 wt% glass fiber (PIWGF) was experimentally examined, and the results were compared to those obtained from a 30 wt% glass fiber reinforced prime nylon 6 compound (PAGF) from a previous study. Fatigue tests were performed under sinusoidal constant amplitude tension‐tension load at a stress ratio of R  = 0.1 and within the frequency range of 2–10 Hz at temperatures from 24 to 120°C. Stress levels from just under the tensile strength down to the run‐out point at 5 million cycles were used. It was found that increasing temperature led to a significant decrease in both tensile strength and fatigue life. For PIWGF, there was ∼20% strength reduction under both static tensile and cyclic loading as compared to PAGF. For both welded and unwelded PIWGF, the endurance ratio; i.e., the ratio of fatigue strength to static tensile strength, was ∼45% regardless of the temperature. The fatigue notch factor ( K f ) was between 1.4 and 1.8 for all test temperatures examined. POLYM. ENG. SCI., 55:799–806, 2015. © 2014 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom