Premium
Analytical model to predict multiaxial laminate fracture toughness from 0° ply fracture toughness
Author(s) -
Mohammed Y.,
Hassan Mohamed K.,
Hashem A.M.
Publication year - 2014
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23552
Subject(s) - materials science , fracture toughness , composite material , toughness , fracture (geology) , composite number , fracture mechanics , compact tension specimen , tension (geology) , composite laminates , ultimate tensile strength , crack growth resistance curve , crack closure
The prediction of nominal strength is very important in the design and evaluation of materials especially polymer matrix composites. Various cohesive laws forms are successfully used in predicting the nominal strength of laminated composite structures. For composite structures, fracture toughness is dominated parameter when using cohesive laws to predict their nominal strength. In spite of complex reported models, this study propose an easy simple model to predict the fracture toughness of multidirectional composite laminates using the fracture toughness of the 0° ply ones. This model is mainly based on the geometry of fiber orientation and linear elastic fracture mechanics and uses the fracture toughness of the 0° ply obtained from compact tension test specimens. A good prediction is obtained by comparing the model results with experimental data which are obtained from center‐cracked specimens manufactured using different lay‐ups orientations and materials. POLYM. ENG. SCI., 54:234–238, 2014. © 2013 Society of Plastics Engineers