z-logo
Premium
Preparation and characterization of high performance exfoliated montmorillonite/silicone rubber nanocomposites with enhanced mechanical properties
Author(s) -
Ismail N.I. Nik,
Ansarifar A.,
Song M.
Publication year - 2013
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23528
Subject(s) - materials science , montmorillonite , nanocomposite , exfoliation joint , natural rubber , composite material , silicone rubber , vulcanization , intercalation (chemistry) , ultimate tensile strength , elongation , nanotechnology , graphene , inorganic chemistry , chemistry
Highly exfoliated and intercalated silicone rubber (SR) nanocomposites based on natural montmorillonite (Cloisite Na + ) and organically modified montmorillonite (Cloisite 30B and Cloisite 20A) were successfully prepared by melt‐mixing technique. Dispersion of the nanoclays in the rubber nanocomposites was subsequently investigated. As indicated by the X‐ray diffraction (XRD) analysis, intercalation, and exfoliation of the clay particles in the nanocomposites was achieved at less than 8 parts per hundred (phr) rubber by weight, irrespective of the initial interlayer spacing of the nanoclay particles. Both Cloisite Na + and Cloisite 30B were spontaneously transformed into exfoliated microstructures during the vulcanisation stage. Overall, the use of the nanoclays in silicone rubber improved the Young's modulus, tensile strength, and elongation at break by more than 50% as compared with the control rubber. In addition, this work provided a fresh insight into the way intercalated and exfoliated morphologies affect mechanical properties of silicone rubber nanocomposites. It was shown that the exfoliated Cloisite Na + yielded outstanding mechanical properties with low hysteresis at the same loading of the exfoliated Cloisite 30B and intercalated Cloisite 20A organoclays. As expected, the formation of crosslinks affected the mechanical properties of the rubber vulcanizate significantly. POLYM. ENG. SCI., 53:2603–2614, 2013. © 2013 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here