Premium
Instability of styrene/polystyrene/polybutadiene/polystyrene‐ b ‐polybutadiene emulsions that emulate styrene polymerization in the presence of polybutadiene
Author(s) -
Velásquez Eliezer,
Oliva Haydée,
Müller Alejandro J.,
López Juan V.,
Vega Jorge,
Meira Gregorio R.,
Wambach Mona
Publication year - 2013
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23450
Subject(s) - polybutadiene , polystyrene , materials science , copolymer , molar mass , styrene , lamellar structure , polymer chemistry , chemical engineering , polymerization , phase (matter) , composite material , polymer , organic chemistry , chemistry , engineering
This article investigates the room temperature demixing of oil‐in‐oil emulsions containing styrene (St), polybutadiene (PB), a St‐butadiene star block copolymer (BC), and two polystyrene (PS) samples of different molecular weights and is a contribution toward a better understanding of the stability/instability of the reaction mixture in a bulk high‐impact polystyrene (HIPS) process close to the phase inversion. Twelve bulk prepolymerizations of St in the presence of PB were emulated, at 10%, 15%, and 20% conversion; and with constant grafting efficiencies. All the blends contained 6% in weight of butadiene units. After stirring the blends for 24 h, the decantation demixing process was monitored along 30 days, with daily measurement of the interface levels after appearance of a clear interface. For some of the isolated phases, their unswollen morphologies were observed by transmission electron microscopy. All the isolated phases exhibited macrophase separation into homopolymer‐ and copolymer‐rich macrodomains with lamellar microdomains. The BC showed a greater affinity toward the PS‐rich phase. The separation of an independent BC‐rich phase in the blends containing the high molar mass PS and at high grafting efficiencies, modifies the idea of the graft‐ or BC molecules located at the interface of large PS‐rich and PB‐rich phases. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers