Premium
Study on glass transition temperature and mechanical properties of cadmium sulfide/polystyrene nanocomposites
Author(s) -
Agarwal Sonalika,
Patidar Dinesh,
Saxe.S.
Publication year - 2013
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23382
Subject(s) - materials science , glass transition , dynamic mechanical analysis , nanocomposite , cadmium sulfide , fourier transform infrared spectroscopy , polystyrene , nanoparticle , composite material , ultimate tensile strength , transmission electron microscopy , casting , polymer , chemical engineering , nanotechnology , metallurgy , engineering
The cadmium sulfide/polystyrene (CdS/PS) nanocomposites with concentration (0, 2, 4, 6, and 8) wt% of CdS nanoparticles were prepared by solution casting method and characterized through fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) measurements. The particle size of nanoparticles is found to be around 15 nm. Glass transition and mechanical behavior of CdS/PS nanocomposites were investigated using dynamic mechanical analyzer (DMA). The mechanical properties such as Young's modulus and tensile strength were determined at room, as well as at elevated temperatures through their stress–strain curves. The result shows that glass transition temperature ( T g ) is shifted toward the higher temperature after the addition of CdS nanoparticles. The mechanical properties increased at low wt% loading of CdS nanoparticles and decreased for higher wt% loading of CdS nanoparticles. It was also found that mechanical properties decline with increase in the temperature. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers