Premium
Poly(ester‐amine) hyperbranched polymer as toughening and co‐curing agent for epoxy/clay nanocomposites
Author(s) -
Eissa Mohamed M.,
Youssef Moshera S.A.,
Ramadan A.M.,
Amin Amal
Publication year - 2013
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23344
Subject(s) - materials science , epoxy , montmorillonite , curing (chemistry) , nanocomposite , toughness , thermogravimetric analysis , composite material , fourier transform infrared spectroscopy , exfoliation joint , polymer , polymer chemistry , chemical engineering , graphene , engineering , nanotechnology
The marriage between hardness and flexibility of epoxy resins (improved toughness) is a desired feature, which broads their application in various industrial fields, especially for high impact resistance purposes. Accordingly, this work aims to improve toughness properties of epoxy resin (Epon‐828)/Ancamine (curing agent) system using amino‐terminated hyperbranched poly(ester‐amine) [Poly(PEODA‐NPA)] (HP) as toughening and/or co‐curing agent, in presence of organo‐modified Montmorillonite clay (OMMT) as a reinforcing filler. HP was synthesized via Michael addition reaction of poly(ethylene glycol) diacrylate (PEODA) to N ‐methyl‐1,3‐propanediamine (NPA). Chemical structure and molecular weight of HP were elucidated using infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) techniques, respectively. Epoxy/OMMT nanocomposites toughened with HP (at different concentrations) showed remarkable improvement in their toughness without any adverse effect on the other physico‐mechanical properties. The optimum concentration of HP and OMMT was found to be 20 wt % and 1–3 wt% of the epoxy resin, respectively. The extent of exfoliation and dispersion of OMMT platelets within the epoxy cured films was assessed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. In addition, thermal gravimetric analyses (TGA‐DTA) of epoxy/OMMT nanocomposites toughened with HP showed a slight increase in their decomposition temperature, particularly at low OMMT loading. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers