Premium
Synthesis of a core–shell polyacrylate elastomer containing ultraviolet stabilizer and its application in polyoxymethylene
Author(s) -
You Bin,
Wu Guibo,
Zhang Shiling,
Yang Fan,
Ren Xiancheng
Publication year - 2012
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23194
Subject(s) - materials science , elastomer , polyoxymethylene , differential scanning calorimetry , acrylate , polymer chemistry , fourier transform infrared spectroscopy , composite material , nuclear chemistry , copolymer , chemical engineering , polymer , chemistry , engineering , physics , thermodynamics
A core–shell polyacrylate elastomer containing ultraviolet (UV) stabilizer was synthesized via semicontinuous seeded emulsion polymerization from butyl acrylate (BA), methyl methacrylate (MMA), and a polymerizable UV stabilizer 2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylproroxy)benzophenone (BPMA). The core–shell poly(MMA‐BA‐BPMA) was investigated by Fourier transform infrared spectroscopy, gel permeation chromatography UV–visible (UV–vis) absorption spectroscopy, and transmission electron microscope. Furthermore, the obtained core–shell poly(MMA‐BA‐BPMA) elastomer was used as a modifier to enhance the UV resistance and impact resistance of polyoxymethylene (POM). As studied by scanning electron microscope, the core–shell poly(BA‐MMA‐BPMA) elastomer could be well dispersed in POM matrix, indicating that the elastomer had good compatibility with POM. In addition, the POM/poly(MMA‐BA‐BPMA) blend was examined by differential scanning calorimetry before and after UV irradiation. The results showed that the melting point decreased as the irradiation time increased; however, the crystallinity culminated at 500‐h UV irradiation slightly decreased and at last leveled off. The mechanical properties of POM/poly(BA‐MMA‐BPMA) before and after UV irradiation were also studied. It revealed that the photostabilizing fragments in the elastomer could provide long‐term UV resistance to POM. Besides, the impact strength was also improved when compared with pure POM. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers