Premium
Synthesis of a novel flame retardant containing phosphorus and sulfur and its application in polycarbonate
Author(s) -
Zhao Wei,
Li Bin,
Xu Miaojun,
Zhang Lili,
Liu Fangmeng,
Guan Limin
Publication year - 2012
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23192
Subject(s) - limiting oxygen index , fire retardant , cone calorimeter , thermogravimetric analysis , polycarbonate , materials science , char , nuclear chemistry , fourier transform infrared spectroscopy , heat of combustion , composite material , combustion , analytical chemistry (journal) , chemical engineering , organic chemistry , chemistry , engineering
A novel flame retardant containing phosphorus and sulfur, bis(2‐tienyl)phenylphosphine (BTPP) was synthesized and characterized with Fourier transform infrared spectroscopy, 1 H, 13 C, and 31 P nuclear magnetic resonance. BTPP was used to impart flame retardancy to polycarbonate (PC). Combustion behaviors and thermal degradation properties of PC/BTPP system were assayed by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter test, and thermogravimetric analysis. PC/3 wt% BTPP passed UL‐94 V‐0 rating with 3.0 mm samples and the LOI value was 36.5%. PC/6 wt% BTPP passed UL‐94 V‐0 rating with 1.6 mm samples and the LOI value was 38.5%. Scanning electron microscopy revealed that char properties had direct effects on the flame retardancy. Mechanical properties and water resistance of PC/BTPP system were also examined. After water resistance test, PC/3 wt% BTPP with 3.0 mm samples and PC/6 wt% BTPP with 1.6 mm samples kept V‐0 rating and mass loss were only 0.2%. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers