z-logo
Premium
Polymeric superabsorbing composite prepared using a glow‐discharge electrolysis plasma for the removal of divalent heavy metal ions from aqueous solutions and its swelling properties
Author(s) -
Wang Xinggang,
Gao Jinzhang,
Yang Wu
Publication year - 2012
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.23170
Subject(s) - aqueous solution , adsorption , langmuir adsorption model , materials science , nuclear chemistry , fourier transform infrared spectroscopy , polymer chemistry , thermogravimetric analysis , distilled water , acrylic acid , sulfonic acid , metal ions in aqueous solution , chemical engineering , chemistry , metal , copolymer , composite material , organic chemistry , chromatography , polymer , metallurgy , engineering
A novel polymeric superabsorbing composite was prepared using the graft copolymerization of acrylic acid (AANa, 70% neutralization with NaOH) and 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) onto the hydroxyethyl cellulose (HEC) [HEC‐ g ‐P(AANa‐ co ‐AMPS)], which was initiated by means of a glow‐discharge electrolysis plasma rather than a chemical initiator. The composite material was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA). We obtained absorbencies of 2490 g g −1 for distilled water and of 109 g g −1 for 0.9 wt% NaCl solution. Results show that the maximum adsorption capacities for Ni(II), Cu(II), Cd(II), Pb(II), and Hg(II) from aqueous solution were 974.84, 975.43, 1535.52, 1970.47, and 1879.53 mg g −1 , respectively. The adsorption isotherm followed the Langmuir isotherm model very well. Adsorption kinetics results indicate that the fast adsorption rate followed the pseudo‐second‐order kinetics equations. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom