z-logo
Premium
Experimental study of melting of LDPE/PS polyblend in an intermeshing counter‐rotating twin screw extruder
Author(s) -
Wilczyński Krzysztof,
Lewandowski Adrian,
Wilczyński Krzysztof J.
Publication year - 2012
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.22103
Subject(s) - materials science , low density polyethylene , composite material , calendering , polymer , extrusion , plastics extrusion , polystyrene , pellets , polyethylene , crystallinity , polypropylene
An experimental study is presented of the melting mechanism in a starve‐fed closely intermeshing counter‐rotating twin screw extruder of a modular Leistritz design. Various polymeric materials, semicrystalline low density polyethylene (LDPE), amorphous polystyrene (PS), and (LDPE/PS) polyblend were investigated at various operating conditions. A “screw pulling‐out” technique was used to investigate polymer behavior along the screw axis. In particular, the solid conveying, melting positions, the extent of starved character along the screw, and the fully filled regions were observed. Polymer samples were stripped off from each screw which was removed from the machine to investigate melting mechanism. Generally, it has been concluded that the melting mechanism revealed by White and Wilczyński for polyolefines has been proved for other polymeric materials under study. This mechanism consists of pellets being dragged into the calendering gap where they are melted due to calendering action. The molten polymer is expelled from the gap and pushes against the pellet bed which is continuously dragged into the gap. The composite modeling of an intermeshing counter‐rotating twin screw extrusion of polyblends has also been discussed. POLYM. ENG. SCI., 52:449–458, 2012. © 2011 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here