Premium
Tracer‐compatibilizer: Synthesis and applications in polymer blending processes
Author(s) -
Zhang CaiLiang,
Feng LianFang,
Gu XuePing,
Hoppe Sandrine,
Hu GuoHua
Publication year - 2012
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.22083
Subject(s) - materials science , copolymer , polystyrene , polymer chemistry , isocyanate , caprolactam , polymer , polyamide , anthracene , polymer science , styrene , polymerization , chemical engineering , composite material , polyurethane , organic chemistry , chemistry , engineering
This article reports on a route to synthesizing fluorescent labeled graft copolymers, on the one hand; and on a concept of tracer‐compatibilizer for facile build‐up of emulsification curves of polymer blends, on the other hand. For these purposes, blends composed of polystyrene (PS) and polyamide 6 (PA6) are chosen. The synthesis of the corresponding tracer‐compatibilizer consists of three steps: (1) copolymerization of styrene with 3‐isopropenyl‐α,α'‐dimethybenzyl isocyanate (TMI); (2) conversion of a fraction of the isocyanate moieties of the resulting copolymer into anthracene ones upon reacting with 9‐(methylamino‐methyl)anthracene (MAMA); and (3) polymerization of ε‐caprolactam (CL) from the remaining isocyanate moieties. The resulting fluorescent labeled graft copolymer, denoted as PS‐ g ‐PA6‐Ant, is used to build up emulsification curves of PS/PA6 blends in a twin screw extruder (TSE), showing great usefulness of the concept of tracer‐compatibilizer. POLYM. ENG. SCI. 2012. © 2011 Society of Plastics Engineers