Premium
Comparison between dew‐retted and enzyme‐retted flax fibers as reinforcing material for composites
Author(s) -
Hu Wei,
TonThat MinhTan,
Denault Johanne,
Rho Denis,
Yang Jianzhong,
Lau Peter C.K.
Publication year - 2012
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.22060
Subject(s) - retting , materials science , ultimate tensile strength , composite material , dew , fiber , polypropylene , thermal stability , scanning electron microscope , crystallinity , chemical engineering , physics , pulp and paper industry , engineering , condensation , thermodynamics
Two kinds of retted Canadian linseed flax fibers, dew‐retted (F1) and enzyme‐retted flax fibers (F2) were characterized in detail for their applications in composites, such as retting degree, thermal stability, tensile strength, and interfacial behavior in polypropylene (PP) matrix. It's clear from Scanning Electron Micrograph that the aspect ratio of F2 was much higher than that of F1 in the light of their separated elementary fibers in most cases. Instead, the elementary fibers of F1 remained tightly bundled into technical fiber wrapping with more non‐cellulose portions. This reflected its lower retting degree and resulted in its lower thermal stability. Single fiber tensile test and single fiber pull‐out test were used to evaluate the fiber tensile properties and fiber/PP interfacial shear strength, respectively. Better retting degree and fewer damages on F2 endowed F2 better tensile property. Consequently, higher aspect ratio, retting degree, and tensile strength proved F2 to be a kind of better reinforcing material than F1 for composites. POLYM. ENG. SCI., 2012. 2011 published by Society of Plastics Engineers