z-logo
Premium
Properties of linear poly(lactic acid)/polyethylene glycol blends
Author(s) -
Sungsanit K.,
Kao N.,
Bhattacharya S.N.
Publication year - 2012
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.22052
Subject(s) - materials science , crystallinity , rheology , plasticizer , peg ratio , lactic acid , dynamic mechanical analysis , polyethylene glycol , glass transition , composite material , viscosity , dynamic modulus , polymer chemistry , chemical engineering , polymer , finance , biology , economics , bacteria , engineering , genetics
Abstract Poly(lactic acid) (PLA) has great potentials to be processed into films for packaging applications. However, film production is difficult to carry out due to the brittleness and low melt strength of PLA. In this investigation, linear PLA (L‐PLA) was plasticized with poly(ethylene glycol) (PEG) having MW of 1000 g mol −1 in various PEG concentrations (0, 5, 10, 15, and 20 wt%). In relation to plasticizer content, the impact resistance and crystallinity of L‐PLA was increased, whereas a decrease in glass transition temperature and lower stiffness was observed. Nevertheless, the phase separation has been found in samples which contained PEG greater than 10 wt%. The dynamic and shear rheological studies showed that the plasticized PLA possessed lower viscosity and more pronounced elastic properties than that of pure PLA. Both storage and loss moduli decreased with PEG loading at all frequencies while storage modulus exhibited weak frequency dependence with increasing PEG content. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here