z-logo
Premium
Elongation properties of polyethylene melts
Author(s) -
Liang JiZhao,
Zhong Lei
Publication year - 2011
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.22036
Subject(s) - extensional viscosity , linear low density polyethylene , low density polyethylene , materials science , extrusion , polyethylene , composite material , rheology , high density polyethylene , extensional definition , viscosity , strain rate , elongation , melt spinning , spinning , ultimate tensile strength , paleontology , biology , shear viscosity , tectonics
The extensional rheological properties of three grades of polyethylene melts, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE) were measured using a melt spinning technique under the test conditions with temperature ranging from 150 to 210°C and extrusion rate varying from 11.25 to 22.50 mm s −1 . The results showed that the melt strength decreased with a rise of temperature while increased with an increase of extensional rate. With the rise of extensional strain rate and temperature, the melt extensional viscosity decreased. The extensional stress and viscosity reduced with increasing extrusion velocity when the temperature and extensional rate were constant. Moreover, the melt strength and extensional viscosity of the LDPE resin was the highest and the LLDPE was the lowest under the same experimental conditions. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here