z-logo
Premium
Microcellular poly(hydroxybutyrate‐ co ‐hydroxyvalerate)‐hyperbranched polymer–nanoclay nanocomposites
Author(s) -
Javadi Alireza,
Srithep Yottha,
Pilla Srikanth,
Clemons Craig C.,
Gong Shaoqin,
Turng LihSheng
Publication year - 2011
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21972
Subject(s) - materials science , nanocomposite , ultimate tensile strength , crystallinity , composite material , exfoliation joint , thermal stability , toughness , young's modulus , polymer , dynamic mechanical analysis , chemical engineering , nanotechnology , graphene , engineering
The effects of incorporating hyperbranched polymers (HBPs) and different nanoclays [Cloisite® 30B and halloysite nanotubes (HNT)] on the mechanical, morphological, and thermal properties of solid and microcellular poly(hydroxybutyrate‐ co ‐hydroxyvalerate) (PHBV) were investigated. According to the X‐ray diffraction (XRD) and transmission electron microscopy (TEM) analyses, Cloisite 30B exhibited a combination of exfoliation and heterogeneous intercalation structure for both solid and microcellular PHBV–12% HBP–2% Cloisite 30B nanocomposites. TEM images indicated that HNTs were uniformly dispersed throughout the PHBV matrix. The addition of 2% nanoclays improved the thermal stability of the resulting nanocomposites. The addition of HBP+poly(maleic anhydride‐ alt ‐1‐octadecene) (PA), Cloisite 30B, and HNT reduced the average cell size and increased the cell density of the microcellular components. The addition of (HBP+PA), Cloisite 30B, and HNT also increased the degree of crystallinity for both solid and microcellular components in comparison with neat PHBV. Also, with the addition of 12% (HBP+PA), the area under the tan‐δ curve, specific toughness, and strain‐at‐break of the PHBV–HBP nanocomposite increased significantly for both solid and microcellular specimens, whereas the storage modulus, specific Young's modulus, and specific tensile strength decreased. The addition of 2% nanoclays into the PHBV–HBP nanocomposites improved the storage modulus, specific Young's modulus, and specific tensile strength of the PHBV–HBP–nanoclay‐based nanocomposites, but they were still lower than those of the neat PHBV. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here