z-logo
Premium
Preparation and crystallization behavior of multiwalled carbon nanotubes/poly(vinyl alcohol) nanocomposites
Author(s) -
Zhu Yilei,
Du Zhongjie,
Li Hangquan,
Zhang Chen
Publication year - 2011
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21964
Subject(s) - vinyl alcohol , materials science , nanocomposite , crystallization , carbon nanotube , ultimate tensile strength , composite material , raman spectroscopy , polyvinyl alcohol , dispersion (optics) , chemical engineering , polymer chemistry , polymer , physics , optics , engineering
The poly(vinyl alcohol) (PVA)‐based nanocomposites embedded with modified multiwalled carbon nanotubes (MWCNTs) were prepared. To enhance the interfacial interaction between MWCNTs and PVA, acid‐treated MWCNTs were grafted with PVA chains, compatibilizing MWCNTs and the matrix. The better dispersion of MWCNTs in PVA matrix was obtained by the introduction of MDI reaction bridges and then PVA molecules onto the surface of MWCNTs. Moreover, strong interaction between MWCNTs and PVA matrix was evidenced through the measurement results of the melting behavior, polarized Raman measurement, and nonisothermal crystallization behavior of the nanocomposites. Owing to the reinforcement of MWCNTs, the tensile strength and modulus of PVA nanocomposite containing 0.9 wt% MWCNTs were increased by 160.7 and 109.2%, respectively, compared to neat PVA. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here