z-logo
Premium
Morphology, mechanical properties, and thermal stability of rigid PVC/clay nanocomposites
Author(s) -
Mondragón Margarita,
SánchezValdés Saúl,
SanchezEspíndola María E.,
RiveraLópez Jesús E.
Publication year - 2011
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21867
Subject(s) - materials science , nanocomposite , composite material , thermal stability , montmorillonite , ultimate tensile strength , scanning electron microscope , extrusion , polymer , izod impact strength test , chemical engineering , engineering
PVC/Poly(ε‐caprolactone) (PCL)/organophilic‐montmorillonite (OMMT) and PVC/Polylactide (PLA)/OMMT nanocomposites were prepared by a two‐step process. PCL/OMMT and PLA/OMMT master batches were prepared by melt blending using a two‐roller mill first, and then they were blended with PVC via extrusion. PVC/OMMT nanocomposites were also prepared using a two‐roller mill. Morphology, mechanical properties, and thermal stability were investigated. The formation of exfoliated or intercalated nanocomposites was confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Only the PVC/PCL/OMMT nanocomposite showed both higher tensile strength and stiffness than unfilled PVC. Atomic force microscopy (AFM) indicated dependency of this behavior not only on the clay dispersion, but also on the adhesion between the OMMT and the polymer matrix. Furthermore, scanning electron microscopy (SEM) showed that the large plastic deformation of the PVC/PCL matrix also contributed to the strength increase of the PVC nanocomposites. The effect of PCL/OMMT on the improvement of the thermal stability of PVC was remarkable while the effect of PLA/OMMT was moderate. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here