Premium
The formation of β‐polypropylene crystals in a compatibilized blend of isotactic polypropylene and polyamide‐6
Author(s) -
Zhang Rong Hua,
Shi De An,
Tsui Chi Pong,
Tang Chak Yin,
Tjong Sie Chin,
Li Robert Kwok Yiu
Publication year - 2011
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21831
Subject(s) - materials science , tacticity , polyamide , crystallization , polypropylene , nucleation , isothermal process , polymer chemistry , composite material , atmospheric temperature range , polymer blend , molding (decorative) , chemical engineering , polymer , copolymer , thermodynamics , polymerization , organic chemistry , chemistry , physics , engineering
Compatibilized polypropylene (PP)/polyamide (PA6) blends with and without β nucleating agent (β‐NA) are prepared, and are designated as Blend‐0.3 and Blend‐0, respectively. The melting and crystallization characteristic of the blends crystallized under different cooling rates and different crystallization temperatures are studied. It is observed that high β‐PP content can be developed in Blend‐0.3 only at slow cooling rates (<5°C/min), whereas high α‐PP content is formed at fast cooling rates. Isothermal crystallization analysis of Blend‐0 indicates that PA6 is an effective NA for α‐PP in the lower temperature range, whereas the α‐nucleating effect disappears in the higher temperature range. Blend‐0.3 can, therefore, be viewed as a system containing both α‐ and β‐NAs, simultaneously. PA6 is competing with β‐NA in inducing PP crystallization. Under the normal injection of Blend‐0.3, the melt will be cooled through the higher temperature that favors the effectiveness of β‐NA rapidly because of the faster cooling rate. However, the α‐nucleation effect from PA6 predominate at the lower temperature. This explains the difficulty in obtaining high β‐PP content in Blend‐0.3 from injection molding. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers