Premium
Linear and nonlinear melt rheology and extrudate swell of acrylonitrile‐butadiene‐styrene and organoclay‐filled acrylonitrile‐butadiene‐styrene nanocomposite
Author(s) -
Saadat Amir,
Nazockdast Hossein,
Sepehr Fatemeh,
Mehranpour Milad
Publication year - 2010
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21769
Subject(s) - organoclay , materials science , die swell , composite material , acrylonitrile butadiene styrene , rheology , nanocomposite , viscoelasticity , natural rubber , extrusion
Melt viscoelastic behavior and the die swell of Acrylonitrile‐Butadiene‐Styrene (ABS) and ABS/clay nanocomposites varying in organoclay loading were studied. A pronounced low‐frequency nonterminal behavior exhibited in linear viscoelastic experiments along with an apparent yield stress in transient startup flow tests suggested the existence of a network type, because of interconnection of rubber particles in ABS matrix. From the results of linear and nonlinear viscoelastic measurements, it was found that the incorporation of organoclay can lead to the formation of an additional network formed between organoclay tactoids that caused reduced temperature dependency of linear viscoelastic properties of the nanocomposite samples compared with ABS matrix. The swelling behavior of samples was interpreted using the results of stress relaxation experiments after cessation of steady shear flow. The great reduction in the die swell of nanocomposite samples could be explained in terms of great surface area and anisometric nature of organoclay tactoids and/or platelets, which promote energy consumption and less energy to be stored in chains. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers