z-logo
Premium
Real time assessment of the compatibilization of polypropylene/polyamide 6 blends during extrusion
Author(s) -
Pinheiro Luís A.,
Bittencourt Celina S.,
Canevarolo Sebastião V.
Publication year - 2010
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21594
Subject(s) - compatibilization , polypropylene , materials science , polyamide , maleic anhydride , copolymer , polymer blend , reactive extrusion , polymer chemistry , composite material , extrusion , particle size , polycarbonate , chemical engineering , polymer , engineering
The reactivity of maleic anhydride and acrylic acid polypropylene graft copolymers with amine groups and their effect in the compatibilization of polymer blends was analyzed in real time during the reactive processing of compatilized polypropylene/polyamide 6 (PP/PA6) blends. The presence of compatibilizers in the blend produces a block copolymer PP‐PA6, which stays in the blends interface, lowering the interfacial tension and reducing the PA6 particle size, affecting the light extinction phenomena. The in‐line optical detector is able to indirectly quantify the conversion of the compatibilization reaction of the blends. The signal intensity of the detector increases with the increase of the PA6 content due to the increase in the number of particles. Quantitative off‐line FTIR analyses of the compatibilized blends have shown that the amount of block copolymer formed when polypropylene grafted with acrylic acid (PP‐ g ‐AA) is used as compatibilizer increases with its content in the blend. There is a good correlation between the in‐line optical measurement and the off‐line amidic bond content formed. Non‐reacted compatibilizers are always present in the reactive blends whose content is proportional to its initial concentration. The PA6 particle size data obtained from scanning electron microscopy analysis showed good correlation with the in‐line measurements. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here