Premium
Adhesion of propylene–ethylene copolymers to high‐density polyethylene
Author(s) -
Lin Y.J.,
Poon B.C.,
Marchand G.R.,
Hiltner A.,
Baer E.
Publication year - 2010
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21492
Subject(s) - materials science , high density polyethylene , composite material , polyethylene , polypropylene , copolymer , thermoplastic elastomer , delamination (geology) , toughness , elastomer , ethylene , thermoplastic , layer (electronics) , polymer , paleontology , biochemistry , catalysis , chemistry , biology , subduction , tectonics
The adhesion of some propylene–ethylene (P/E) copolymers to polypropylene (PP) and high density polyethylene (HDPE) was studied in order to compare them with other olefin copolymers as compatibilizers for PP/HDPE blends. A one‐dimensional model of the compatibilized blends was fabricated by layer‐multiplying coextrusion. The microlayered tapes consisted of many alternating layers of PP and HDPE with a thin tie‐layer inserted at each interface. The thickness of the tie‐layer varied from 0.1 to 15 μm, which included thicknesses comparable to those of the interfacial layer in a compatibilized blend. In the T‐peel test, the P/E copolymers delaminated at the HDPE interface. An elastomeric P/E with higher ethylene content exhibited substantially higher delamination toughness than a more thermoplastic P/E with lower ethylene content. Inspection of the crack‐tip damage zone revealed that a change from deformation of the entire tie‐layer to formation of a localized yielded zone was responsible. By treating the damage zone as an Irwin plastic zone, it was demonstrated that a critical stress controlled the delamination toughness. The temperature dependence of the delamination toughness was also measured. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers