z-logo
Premium
Tailoring the structural properties of PVDF and P(VDF‐TrFE) by using natural polymers as additives
Author(s) -
Simoes R.D.,
RodriguezPerez M.A.,
De Saja J.A.,
Constantino C.J.L.
Publication year - 2009
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21455
Subject(s) - materials science , melt flow index , thermal stability , fourier transform infrared spectroscopy , polymer , composite material , polymer blend , scanning electron microscope , chemical engineering , natural rubber , copolymer , engineering
The poly(vinylidene fluoride), PVDF, and its copolymer poly(vinylidene fluoride‐trifluoroethylene), P(VDF‐TrFE), are of great scientific and technological interest due to their ferro, pyro, and piezelectrical properties besides chemical and thermal stability. Recently, their biocompatibility has been shown as well. Therefore, considering all this potentiality, self‐standing films of PVDF and P(VDF‐TrFE) containing corn starch and latex of natural rubber as additives were produced by compressing/annealing forming blends. This process allows one to discard the necessity of using solvents to dissolve either PVDF or P(VDF‐TrFE), which are toxic to human. The films were structurally characterized through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction, density, melt flow index, hardness, and thermal conductivity. The results showed that the polymers do not interact chemically with the additives leading to the formation of blends as physical mixtures where the additives are well dispersed within the blends at micrometer level. However, it was observed that the adhesion of the starch is better in the case of blends with P(VDF‐TrFE). Besides, the crystalline structures of the α‐PVDF and ferroelectric P(VDF‐TrFE) are kept in the blends. The density, hardness, melt flow index, and thermal conductivity values of the blends followed what should be expected from physical mixtures. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here