Premium
Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder
Author(s) -
Zhang XianMing,
Feng LianFang,
Chen WenXing,
Hu GuoHua
Publication year - 2009
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21404
Subject(s) - mixing (physics) , materials science , plastics extrusion , residence time distribution , mechanics , distributive property , work (physics) , flow (mathematics) , computational fluid dynamics , computer simulation , tracking (education) , mechanical engineering , composite material , mathematics , physics , engineering , psychology , pedagogy , quantum mechanics , pure mathematics
This work aims at simulation by particle tracking the local residence time distributions (RTDs) of a co‐rotating twin‐screw extruder using computational fluid dynamics. Simulated results follow reasonably well the trend of experimental results obtained by an in‐line measuring instrument for different screw configurations and feed rates. To analyze the distributive mixing performance and overall efficiency of different types of kneading discs (KDs), mixing parameters such as area stretch ratio, instantaneous efficiency, and time‐average efficiency are calculated. Among KDs with stagger angles 45°, 60°, and 90°, the 90/10/64 with disc gaps is most efficient in terms of distributive mixing. The effects of the disc width and disc gap on the local RTD and distributive mixing are also discussed. This provides a numerical tool for assessing point‐by‐point information on the local RTD, flow, and mixing along the screw extruder. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers