z-logo
Premium
Steady‐state viscoelastic flow simulation of polymer melts in a rotational‐type rheometer
Author(s) -
Tanoue Shuichi,
Zielinski Michal K.,
Iemoto Yoshiyuki
Publication year - 2009
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21396
Subject(s) - rheometer , viscoelasticity , materials science , rheology , shear rate , viscosity , composite material , constitutive equation , shear stress , apparent viscosity , polymer , isothermal process , mechanics , finite element method , thermodynamics , physics
Abstract Polymer samples in the jigs begins to protrude when the heat is turned up when we measure the rheological characteristics of polymer melts using rotational‐type rheometers, such as parallel and cone‐and‐plate types. To clarify the effects of this protruding part on the obtained rheological data, we tried to evaluate the rotational‐type rheometer by a non‐isothermal viscoelastic flow simulation using the finite element method. The multiple mode Phan‐Thien Tanner (PTT) model was employed as the constitutive equation. As a result, the shear viscosity in the steady state increases with the size of the protruding part of the polymer melt specimen at the same shear rate in case with a parallel plate and a cone‐and‐plate type rheomters. In contrast, the deviation of the primary normal stress difference between the estimated value from the simulation results and the data from the PTT model is almost independent of the size of the protruding part with the cone‐and‐plate type rheometer. In addition, the deviations of the primary normal stress difference with a parallel plate rheometer increase with the protruding part size. However, these deviations are smaller than those of shear viscosity. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here