Premium
Scratch behavior of epoxy nanocomposites containing α‐zirconium phosphate and core‐shell rubber particles
Author(s) -
Moghbelli Ehsan,
Sun Luyi,
Jiang Han,
Boo Woong J.,
Sue HungJue
Publication year - 2009
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21305
Subject(s) - scratch , materials science , epoxy , composite material , nanocomposite , ultimate tensile strength , toughness , ductility (earth science) , natural rubber , fracture toughness , scanning electron microscope , creep
The effects of nanoscale core‐shell rubber (CSR) particles and α‐zirconium phosphate (ZrP) nanoplatelet fillers on the scratch behavior of epoxy have been examined using a newly established ASTM scratch testing method. The critical load for onset of microcrack formation is utilized to determine scratch resistance of the epoxy nanocomposites. Optical microscopy and scanning electron microscopy were performed to determine failure and fracture patterns caused by the scratch. The findings of this study suggest that the introduction of nanoparticles or nanoplatelets does not necessarily enhance the scratch resistance of epoxy. This implies that increases in ductility and fracture toughness alone, i.e., the epoxy/CSR case, and enhancements in modulus and tensile strength alone, i.e., the epoxy/ZrP case, will not necessarily improve scratch resistance of epoxy matrix. A combination of material property attributes is needed to prepare scratch resistant polymers. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers