Premium
Simulation of phase‐change heat transfer during cooling stage of gas‐assisted injection molding of high‐density polyethylene via enthalpy transformation approach
Author(s) -
Yang Bin,
Fu XiaoRong,
Yang Wei,
Liang ShuiPo,
Hu Shen,
Yang MingBo
Publication year - 2009
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21291
Subject(s) - materials science , molding (decorative) , enthalpy , polyethylene , heat transfer , composite material , high density polyethylene , blow molding , low density polyethylene , polymer , thermodynamics , mold , physics
Gas‐assisted injection molding (GAIM) is one of the significant fabricating technologies of plastics in modern industry, mainly owing to the light weight of products, good structural rigidity and dimensional stability, as well as shorter molding cycles. The objective of this article is to explore the temperature profiles during the cooling stage of gas‐assisted injection molded high‐density polyethylene (HDPE) parts using a transient heat transfer model of the enthalpy transformation method, which could always be utilized for the numerical studies of the phase‐change heat transfer issues. The simulated results were validated by the in situ measurement of temperature decay, and good agreement has been observed. The comparison between GAIM and conventional injection molding (CIM) reveals that it is the rapid cooling rate (because of thin wall‐thickness) and the inner gas cooling effects that together lead to the shortening of molding cycles. As cooling rate plays a part in the stabilization of the crystalline structure during the GAIM process according to our previous studies, this work is of significance for the operational designs in GAIM industrial applications and further investigation on the detailed mechanisms of various crystalline structures in GAIM parts. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers