z-logo
Premium
Study on flame retardance of co‐microencapsulated ammonium polyphosphate and dipentaerythritol in polypropylene
Author(s) -
Wang Zhengzhou,
Wu Kun,
Hu Yuan
Publication year - 2008
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21198
Subject(s) - ammonium polyphosphate , fire retardant , polypropylene , materials science , limiting oxygen index , thermal stability , polyphosphate , composite material , chemical engineering , ammonium , solubility , polymer chemistry , phosphate , chemistry , organic chemistry , char , pyrolysis , engineering
Co‐microencapsulated ammonium polyphosphate and dipentaerythritol [M(A&D)] was prepared using a melamine‐formaldehyde (MF) resin by in situ polymerization method, and characterized by XPS. The co‐microencapsulation of ammonium polyphosphate and dipentaerythritol (DPER) leads to a great improvement in water solubility of the additives. The flame retardant effect of M(A&D) in polypropylene (PP) is evaluated using limiting oxygen index (LOI) and UL 94 test, and the water resistance of the PP/M(A&D) composites is also studied. The flame retardant properties and water resistance of the PP/M(A&D) composites are much better than the ones of the PP/APP/DPER composites. Moreover, the thermal stability of the PP/M(A&D) composites is improved compared with the PP/APP/DPER composites. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here