Premium
A simplified method to determine the 3D orientation of an injection molded fiber‐filled polymer
Author(s) -
Régnier G.,
Dray D.,
Jourdain E.,
Le Roux S.,
Schmidt F. M.
Publication year - 2008
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.21161
Subject(s) - materials science , fiber , composite material , ellipse , orientation (vector space) , composite number , polymer , characterization (materials science) , flow (mathematics) , plane (geometry) , nanotechnology , geometry , mathematics
In short‐fiber reinforced composites, it is widely accepted that the fiber orientation plays an important role on their overall physical and thermomechanical properties. To predict the properties of such composite materials, a full 3D fiber orientation characterization is required. A variety of destructive and nondestructive techniques have been developed, but all the methods have the same common point that they are very tedious and time consuming. Knowing that the fiber orientation induced by the flow remains mainly in the flow plane, an easier method has been performed for injection molded fiber‐filled polymers. It is based on the simple 2D SEM image analysis of a specific 45°‐oblique section plane. Then, the indetermination of fiber orientation from an ellipse mark analysis does not exist anymore. This novelty also turns out to be much more accurate. To achieve measurements over large composite samples, the method has been fully automated. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers