z-logo
Premium
High‐density polyethylene reinforced with submicron titania particles
Author(s) -
Bondioli Federica,
Dorigato Andrea,
Fabbri Paola,
Messori Massimo,
Pegoretti Alessandro
Publication year - 2008
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20973
Subject(s) - materials science , high density polyethylene , composite material , creep , viscoelasticity , polyethylene , ultimate tensile strength , elastic modulus , elongation , modulus , amorphous solid , chemistry , organic chemistry
Submicron titania particles were prepared by means of two different synthetic procedures in order to obtain different particle size (diameter ranging from 20 to 350 nm), shapes, and morphologies (amorphous or crystalline). Titania particles were surface modified with octadecylsilane in order to improve their compatibility with respect to polymeric matrices. High‐density polyethylene (HDPE)–titania composites were prepared by melt blending by using an internal mixer. The obtained composites were mechanically characterized in quasi static and creep tensile conditions. The presence of submicron titania particles (1 %vol) led to a significant increase of elastic modulus (20–25%) with respect to the unreinforced HDPE together with a slight increase of yield stress and a decrease of ultimate elongation. An interesting reduction for both elastic and viscoelastic creep compliance components was also evidenced. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here