z-logo
Premium
Sharkskin and oscillating melt fracture: Why in slit and capillary dies and not in annular dies?
Author(s) -
DelgadilloVelázquez O.,
Georgiou G.,
Sentmanat M.,
Hatzikiriakos S.G.
Publication year - 2008
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20939
Subject(s) - materials science , extrusion , capillary action , slip (aerodynamics) , composite material , die (integrated circuit) , mechanics , shear rate , shear stress , rheology , thermodynamics , physics , nanotechnology
The sharkskin and stick‐slip polymer extrusion instabilities are studied primarily as functions of the type of die geometry. Experimental observations concerning the flow curves, the critical wall shear stress for the onset of the instabilities, the pressure and flow rate oscillations, and the effects of geometry and operating conditions are presented for linear low‐density polyethylenes. It is found that sharkskin and stick‐slip instabilities are present in the capillary and slit extrusion. However, annular extrusion stick‐slip and sharkskin are absent at high ratios of the inside‐to‐outside diameter of the annular die. This observation also explains the absence of these phenomena in other polymer processing operations such as film blowing. These phenomena are explained in terms of the surface‐to‐volume ratio of the extrudates, that is, if this ratio is high, sharkskin and stick‐slip are absent. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here