Premium
Optimizing the balance between impact strength and stiffness in polypropylene/elastomer blends by incorporation of a nucleating agent
Author(s) -
Fanegas N.,
Gómez M.A.,
Jiménez I.,
Marco C.,
GarciaMartínez J.M.,
Ellis G.
Publication year - 2008
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20886
Subject(s) - materials science , izod impact strength test , composite material , thermoplastic elastomer , elastomer , polypropylene , flexural modulus , copolymer , flexural strength , toughness , tacticity , polymer blend , blowing agent , polymer , ultimate tensile strength , polyurethane , polymerization
Isotactic polypropylene (iPP) blends were prepared with two different thermoplastic elastomers, a triblock copolymer styrene–ethylene butylene–styrene (SEBS) and a metallocenic ethylene‐octene copolymer (EO). The mechanical properties and morphology of blends with 0–50 wt% elastomer were studied to determine the influence of the presence of the elastomer on the improvement of toughness. The addition of a nucleating agent as a third component exerted a significant effect on the overall properties. Dynamic mechanical properties, flexural modulus, and impact strength as well as morphology were studied for nucleated and nonnucleated iPP/SEBS and iPP/EO blends. The improvement of impact properties found in binary blends was accompanied by a decrease in stiffness. However, the addition of the nucleating agent provided a good balance between impact strength and stiffness. From the results, SEBS was determined to be a better impact modifier for iPP than EO. The nucleated iPP/SEBS blends demonstrated improved mechanical properties compared with both the nucleated iPP/EO blends and the nonnucleated blends. POLYM. ENG. SCI., 48:80–87, 2008. © 2007 Society of Plastics Engineers