Premium
Interaction of thermoplastic polyurethane with polyamide 1212 and its influence on the thermal and mechanical properties of TPU/PA1212 blends
Author(s) -
Li Wanli,
Liu Jinli,
Hao Chaowei,
Jiang Kai,
Xu Duanfu,
Wang Dujin
Publication year - 2008
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20853
Subject(s) - materials science , thermoplastic polyurethane , vicat softening point , composite material , ultimate tensile strength , polyamide , differential scanning calorimetry , izod impact strength test , thermal stability , elastomer , softening point , chemical engineering , physics , engineering , thermodynamics
To improve the heat resistance of polyester‐based thermoplastic polyurethane (TPU), in the present work, polyamide 1212 (PA1212) was chosen as a modifier and a series of TPU/PA1212 blends with different compositions were prepared using a twin screw extruder. The solubility parameters, characteristic of chemical structures, hydrogen‐bonding interaction, as well as interfacial tension of the single component and blends were taken into account to describe the good compatibility of TPU/PA1212 blends. The effect of PA1212 content on the rheological behaviors, morphology, mechanical, and thermal properties of TPU/PA1212 blends were systematically investigated with scanning electron microscope, tensile strength measurement, thermal gravimetry analysis, differential scanning calorimetry, and Vicat softening temperature (VST). The results showed that PA1212 formed submicron dispersion domains in the TPU matrix, indicating good compatibility between TPU and PA1212. A slight increase of the tensile strength was achieved as PA1212 content is relatively low. Because of the strong hydrogen‐bonding interaction between TPU and PA1212, the thermal stability of the blends is improved, and VST values rise up from about 80 (pure TPU) to 100°C, showing attractive potential application. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers