Premium
Rheological characterization of HDPE/sisal fiber composites
Author(s) -
Mohanty Smita,
Nayak Sanjay K.
Publication year - 2007
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20847
Subject(s) - materials science , composite material , viscoelasticity , sisal , high density polyethylene , time–temperature superposition , fiber , rheology , shear rate , rheometer , arrhenius equation , viscosity , die swell , activation energy , polyethylene , extrusion , chemistry , organic chemistry
The present paper summarizes an experimental study on the molten viscoelastic behavior of HDPE/sisal composites under steady and dynamic mode. Variations of the melt viscosity and die swell of the composites with an increase in shear rate, fiber loading, and coupling agent concentration have been investigated using capillary rheometer. The shear rate γ at the wall was calculated using Rabinowitsch correction applied to the apparent shear rate values. It was observed that the melt viscosity of the composites increased with the addition of fibers and maleic anhydride‐grafted PE (MAPE). Die swell of HDPE also decreased with the addition of sisal fibers and MAPE. Further, the dynamic viscoelastic behavior of the composites was measured employing parallel plate rheometer. Time–temperature superposition was applied to generate various viscoelastic master curves. Temperature sweeps were also carried out to study the flow activation energy determined from Arrhenius equation. The fiber–matrix morphology of the extrudates was also examined using scanning electron microscopy. POLYM. ENG. SCI., 47:1634–1642, 2007. © 2007 Society of Plastics Engineers