Premium
Vapor‐induced crystallization behavior of bisphenol‐A polycarbonate
Author(s) -
Fan Zhongyong,
Shu Chang,
Yu Ying,
Zaporojtchenko V.,
Faupel F.
Publication year - 2006
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20554
Subject(s) - crystallinity , crystallization , materials science , polycarbonate , nucleation , differential scanning calorimetry , spherulite (polymer physics) , crystal (programming language) , analytical chemistry (journal) , polymer chemistry , chemical engineering , polymer , composite material , thermodynamics , chemistry , organic chemistry , physics , computer science , engineering , programming language
The effects of exposure time and vapor pressure on the crystallization behaviors of bisphenol‐A polycarbonate (BAPC) films were investigated at 25°C by using differential scanning calorimetry (DSC). Double melting peaks were observed for various BAPC samples after vapor‐induced crystallization. The low temperature melting peak shifted to higher temperature and became sharper with increasing exposure time, and could be assigned to defective crystals with smaller crystal size. Crystallinity and average crystal dimension normal to (020) were calculated from wide‐angle X‐ray diffraction spectra. A good agreement was obtained between crystallinity values obtained from WAXD and those from DSC. The morphology of crystallized samples after various exposure time periods was examined by means of polarized optical microscopy. Nucleation occurred at the initial stage of vapor‐induced crystallization. Poor crystals become perfect through segment reorganization with increasing exposure time, and spherulites' growth was observed. The average diameter of spherulites increased from 2 μm for 1 h, to 7 and 16 μm after 3 and 56 h, respectively. POLYM. ENG. SCI., 46:729–734, 2006. © 2006 Society of Plastics Engineers