Premium
Increased flow property of polycarbonate by adding hollow glass beads
Author(s) -
Chen Peng,
Zhang Jun,
He Jiasong
Publication year - 2005
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20382
Subject(s) - materials science , viscoelasticity , polycarbonate , composite material , rheometry , shear rate , polymer , viscosity , shear modulus , dynamic mechanical analysis , slip (aerodynamics) , modulus , shear flow , dynamic modulus , thermodynamics , physics
The steady shear viscosity and dynamic viscoelastic properties of glass beads (GB) filled polycarbonate (PC) melts were studied at varying filler diameters and concentrations. The PC/GB composites containing small amounts of GB bore lower melt viscosity and dynamic modulus than those of pure PC at studied frequencies and shear rates, showing a “ball‐bearings” effect. For highly filled systems, the viscosity and dynamic modulus were decreased further at higher frequencies and shear rates. This ball‐bearings effect was enhanced by changing the GB from larger to smaller one. The oscillatory experiments with modified shear stress showed a stress‐dependent decrease of the viscoelastic properties, and revealed an interfacial slip mechanism, combined with the polymer chains disentanglement at melt/solid interfaces. The scaling relationship between the relative viscosity and the mean interparticle gap confirmed that the interfacial slip and polymer chains disentanglement were induced by the extremely high local shear developed in the narrow gaps between the nearby rotating spheres. POLYM. ENG. SCI., 45:1119–1131, 2005. © 2005 Society of Plastics Engineers