z-logo
Premium
Thermodynamic approach of inflation process of K‐BKZ polymer sheet with respect to thermoforming
Author(s) -
Erchiqui Fouad
Publication year - 2005
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20360
Subject(s) - thermoforming , materials science , viscoelasticity , finite element method , constitutive equation , deformation (meteorology) , mechanics , composite material , thermodynamics , physics
Abstract The problem of modeling and the dynamic finite element simulation of thermoforming process for viscoelastic sheet are considered. The pressure load used in modeling is thus deduced from the thermodynamic law of ideal gases. The viscoelastic behavior of the K‐BKZ model is considered. The Lagrangian formulation together with the assumption of the membrane theory is used in the finite element implementation. The numerical validation is performed by comparing the theoretical solution for the uniaxial and equibiaxial hencky deformation with numerical results. Moreover, the influence of the K‐BKZ constitutive model, for three linear time distribution of airflow rate loading, on the thickness and on the stress distribution in thermoforming of containers made of HDPE are analyzed. POLYM. ENG. SCI., 45:1319–1335, 2005. © 2005 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here