z-logo
Premium
Influence of annealing treatment on the heat distortion temperature of nylon‐6/montmorillonite nanocomposites
Author(s) -
Xie Shaobo,
Zhang Shimin,
Wang Fosong,
Liu Huiju,
Yang Mingshu
Publication year - 2005
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20359
Subject(s) - materials science , montmorillonite , heat deflection temperature , nanocomposite , differential scanning calorimetry , crystallinity , annealing (glass) , fourier transform infrared spectroscopy , composite material , chemical engineering , izod impact strength test , ultimate tensile strength , physics , engineering , thermodynamics
It has been recognized that the incorporation of nanoscale montmorillonite (MMT) layers into polymer matrix enhances significantly the heat resistance of the resultant nanocomposites, especially for nylon‐6 (N6)/clay nanocomposites (NCNs). In the present work, the heat distortion temperature (HDT) of NCNs, including the intercalated N6/Na‐montmorillonite (Na‐MMT) and the exfoliated N6/organo‐montmorillonite (OMMT) ones, have been investigated for both non‐annealed and annealed testing specimens in comparison with the neat N6. As expected, the incorporation of MMT obviously improved HDT of NCNs, with the highest HDT value obtained in the N6/OMMT system due to its exfoliated nano‐structure. After an annealing treatment at 80°C for 6 hr, the HDT revealed noticeable increase for all the samples, particularly for the intercalated N6/Na‐MMT nanocomposite that showed the highest increment of 34°C. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared (FTIR) techniques were employed to clarify the origin of the variation in HDT after annealing, and the results suggest that the increases in the crystallinity, the glass transition temperature, and the order degree of hydrogen bonding may account for the noticeable increases in the HDT of the nanocomposites after annealing. POLYM. ENG. SCI., 45:1247–1253, 2005. © 2005 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here