z-logo
Premium
Experimental and numerical studies of injection molding with microfeatures
Author(s) -
Xu Guojun,
Yu Liyong,
Lee L. James,
Koelling Kurt W.
Publication year - 2005
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20341
Subject(s) - materials science , mold , microchannel , transfer molding , molding (decorative) , composite material , heat transfer , heat transfer coefficient , thermoforming , mechanics , nanotechnology , physics
Injection molding with microstructures was investigated both experimentally and theoretically. A series of injection molding experiments with PP and PMMA was carried out in a long and a short rectangular mold containing microchannels with the thickness of either 50 or 100 μm and an aspect ratio of 5. The filling lengths in the microchannels were affected by injection speed, mold temperature, and channel location. A high injection speed or high mold temperature resulted in a longer filling length. The filling length in the microchannels decreased as the filling time in the main flow region increased. All filling lengths can be merged into a single curve vs. Fourier number based on the microchannel thickness. Comparison was also made between the experimental measurements and numerical simulation. The mold/melt heat transfer coefficient was found to be a critical factor in determining the filling lengths. The local heat transfer coefficient provided a much better agreement than a constant heat transfer coefficient. POLYM. ENG. SCI., 45:866–875, 2005. © 2005 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here