z-logo
Premium
Effect of morphology on barrier properties of poly(ethylene terephthalate)
Author(s) -
Natu A.A.,
Lofgren E.A.,
Jabarin S.A.
Publication year - 2005
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20288
Subject(s) - crystallinity , materials science , crystallization , amorphous solid , phase (matter) , morphology (biology) , chemical engineering , permeation , spherulite (polymer physics) , composite material , polymer chemistry , polymer , crystallography , organic chemistry , chemistry , membrane , biology , engineering , genetics , biochemistry
The effects of morphology on the barrier properties of poly(ethylene terephthalate) (PET) have been investigated. Various levels of crystallinity can be developed in PET as a result of thermal exposure, orientation, and heat setting. The morphologies of the crystalline phase are affected by the conditions of their formation. As a result of morphological differences, samples with equivalent levels of crystallinity have been found to exhibit different oxygen barrier properties. These differences are most apparent at low and intermediate levels of crystallinity. For thermally crystallized systems, at the same crystalline content, increasing superstructure size in the crystalline phase leads to greater tortuosity for the permeant molecules, resulting in lower permeability. For stretched and heat set PET, transport properties can be correlated with birefringence as well as overall orientation, measured in terms of fraction of molecules in the trans or extended chain conformation. At high levels of crystallinity, where the spherulites become volume filling, permeation takes place primarily through the interlamellar regions of the crystalline phase and is controlled by level of crystallinity, independent of the mode of crystallization. The barrier properties of PET, before spherulitic impingement occurs, are governed by the size and number of spherulites as well as by the amorphous orientation present in non‐crystalline regions. POLYM. ENG. SCI., 45:400–409, 2005. © 2005 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here