z-logo
Premium
Primary and secondary gas penetration during gas‐assisted injection molding. Part I: Formulation and modeling
Author(s) -
Li C. T.,
Isayev A. I.
Publication year - 2004
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.20090
Subject(s) - penetration (warfare) , materials science , molding (decorative) , mechanics , composite material , mechanical engineering , engineering , physics , operations research
A theoretical study has been carried out on the transient gas‐liquid interface development and gas penetration behavior during the cavity filling and gas packing stage in the gas‐assisted injection molding (GAIM) of a tube cavity. A mathematical formulation describing the evolution of the gas/melt interface and the distribution of the residual wall thickness of skin melt along with the advancement of gas/melt front is presented. The physical model is put forward on the basis of Hele‐Shaw approximation and interface kinematics and dynamics. Numerical simulation is implemented on a fixed mesh covering the entire cavity. The model and simulation can deal with both primary and secondary gas penetrations. The predicted and measuredresults are compared in Part II of this study to validate the theoretical model. Polym. Eng. Sci. 44:983–991, 2004. © 2004 Society of Plastics Engineers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here